
Generalized procedure to determine the dependence of steady-state
photoconductance lifetime on the occupation of multiple defects

Keith R. McIntosh,1,a� Bijaya B. Paudyal,1 and Daniel H. Macdonald2

1Centre for Sustainable Energy Systems, Australian National University, Canberra, ACT 0200, Australia
2Department of Engineering, Australian National University, Canberra, ACT 0200, Australia

�Received 25 July 2008; accepted 21 August 2008; published online 17 October 2008�

We present a procedure to determine the dependence of photoconductance lifetime on the
occupation of multiple defects. The procedure requires numerical iteration, making it more
cumbersome than the analytical equations available for single-defect and simplified two-defect
cases, but enabling the following features: �i� it accounts for the defect concentration when
calculating the equilibrium carrier concentrations, �ii� it permits recombination through any number
of defects, �iii� it calculates the occupation fraction of all defects at any injection, and �iv� it
promotes a good understanding of the role of defect occupation in photoconductance measurements.
The utility of the numerical procedure is demonstrated on an experimental sample containing
multiple defects. The dependence of the sample’s photoconductance on carrier concentration and
temperature can be qualitatively described by the generalized procedure but not by either analytical
model. The example also demonstrates that the influence of defect occupation on photoconductance
lifetime measurements is mitigated at elevated temperatures—a conclusion of particular worth to the
study of multicrystalline silicon. © 2008 American Institute of Physics. �DOI: 10.1063/1.2999640�

I. INTRODUCTION

Carrier lifetime �eff is routinely determined by steady-
state photoconductance.1 This technique consists of measur-
ing a sample’s excess conductance �S as a function of pho-
togeneration G, converting �S�G� to excess carrier
concentration by assuming that the excess electron �n and
hole �p concentrations are equal, and finally, by converting
�n�G� to �eff��n� using the carrier mobility and sample
width. The assumption that �n=�p is invalid, however,
when a significant fraction of light-generated carriers popu-
lates defect states rather than the conduction or valence
bands. These carriers are “trapped” and do not contribute to
�S.

The influence of defect occupation on S was first exam-
ined in the mid-1950s by Hornbeck and Haynes2 and Fan.3

They described its best known manifestation in which there
are two defects: a “recombination defect” that dominates at
high carrier concentrations and a “trapping defect” that
dominates at lower carrier concentrations. This two-defect
trapping is observed in all multicrystalline silicon so much so
that in some cases �eff cannot be measured by photoconduc-
tance at illumination levels relevant to photovoltaic
operation.4 Two-defect trapping has also been observed in
some monocrystalline silicon.5,6

An analytical equation that relates S to the occupation of
a single defect has been derived by Blakemore.7 The single
defect’s occupation has a subtle influence on S and �eff that
might easily go unnoticed. An expression for the defect con-
centration above which Blakemore’s equation is required
�i.e., when �n is significantly different from �p� is derived
by Macdonald and Cuevas8 and extended by Yashin9 to re-

move a restriction on the permissible �n /�p ratio. Yashin
accounted for the influence of defect concentration on equi-
librium concentrations.9

An analytical equation for a two-defect model has also
been derived.2 It is limited, however, by two assumptions: �i�
that the population and depopulation of one defect—the trap-
ping defect—are only possible from one band �conduction or
valence� and therefore, that no recombination occurs through
this defect and �ii� that the defect is entirely unoccupied at
equilibrium and entirely occupied under illumination. As
such, it cannot account for the temperature dependence of S
and �eff, as described in Sec. III.

In this work, we present a generalized procedure to de-
scribe the influence of defect occupation on S and �eff for any
number of defects. It is consistent with Blakemore’s equation
for a single defect and avoids the long simultaneous equa-
tions that result when extending this equation to multiple
defects. It is also consistent with the Hornbeck–Haynes
model when the aforementioned assumptions are valid.
While more complicated than its analytical counterparts, the
merits of the procedure are that �i� it accounts for the defect
concentration when calculating the equilibrium carrier con-
centrations, �ii� it permits recombination through any number
of defects, �iii� it calculates the occupation fraction of all
defects at any injection, and �iv� it promotes a good under-
standing of the role of defect occupation in photoconduc-
tance measurements.

We first present the generalized procedure to numerically
determine S and �eff and then provide an example that dem-
onstrates its utility. The example also illustrates that the de-
bilitating effect of trapping on photoconductance lifetime
measurements can be circumvented by raising the sample’sa�Electronic mail: krmcIntosh@gmail.com.
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temperature: at an elevated temperature, the defect occupa-
tion remains constant with injection, validating the assump-
tion that �n=�p.

II. THEORY

A. General photoconductance lifetime theory

A steady-state photoconductance lifetime measurement
involves the comparison of a sample’s conductance under
photogeneration S�G� to its conductance at equilibrium S0

�i.e., G=0�. For all G, S depends on the free electron n and
hole p concentrations within the sample, the mobility of
those electrons �n and holes �p, the width of the sample W,
and the elementary charge q by the equation

S = q�W

��nn + �pp�dx . �1�

Being one dimensional, Eq. �1� assumes spatial uniformity in
directions perpendicular to x.

It is usually assumed that the excess electron �n and
hole �p concentrations induced by the illumination are
equal,

�n = n − n0 = p − p0 = �p , �2�

and constant with x so that Eq. �1� simplifies to10

�S = S − S0 = q��n + �p��nW . �3�

Equation �3� also entails the assumptions that �S in the
surface diffusions �if present� is negligible and that W is
constant with G. �When the sample contains either a surface
diffusion or surface charge, W represents the width of the
quasineutral bulk and can change due to depletion-region
modulation �DRM�.11–13�

Thus, with a measurement of �S�G� and W and with a
value for ��n+�p�, photoconductance measurements yield
�n�G�. One can therefore determine the sample’s effective
lifetime �eff in steady state �G=U� as defined by1

�eff��n� �
�n

U��n�
. �4�

B. Defect occupation fraction

Equation �2� requires the concentration of defects occu-
pied by electrons nt and holes pt to be the same under illu-
mination as at equilibrium. When this is not the case, �n and
�p are given by

�n = �n + nt� − �n0 + nt0� , �5a�

�p = �p + pt� − �p0 + pt0� , �5b�

where nt= fnNt, pt= �1− fn�Nt, Nt is the defect concentration,
and fn is the fraction of defects occupied by an electron,14

fn =
�nn + �pp1

�n�n + n1� + �p�p + p1�
, �6�

where �n and �p are the electron and hole capture cross
sections,

n1 = ni exp��Et − Ei�/kT� , �7a�

p1 = ni exp��Ei − Et�/kT� , �7b�

where Et is the energy level of the defect, Ei is the intrinsic
Fermi level, ni is the intrinsic carrier concentration, k is the
Boltzmann constant, and T is the absolute temperature.

Thus, if fn is constant for all G, and therefore, for all
carrier concentrations, nt and pt must also be constant �i.e.,
equal to nt0 and pt0�. In this case, Eq. �5� simplifies to Eq. �2�
and the theory of the previous section is valid.

There is, however, a variety of conditions for which fn

changes significantly with carrier concentration. Figure 1
provides an example, plotting fn as function of the excess
majority carrier concentration �p for 1 � cm p-type silicon
and as a function of �a� Nt, �b� �p, �c� Et−Ei, and �d� T.
Except for the featured parameter, the calculations of each
plot were made for the baseline parameters: Nt=1014 cm−3,
�n=10−15 cm2, �p=10−19 cm2, Et−Ei=−0.3 eV, and T
=300 K. Having asymmetrical capture cross sections, a high
defect concentration, and a defect energy far from the band
edges, these parameters demonstrate how fn can vary signifi-
cantly with �p.

FIG. 1. Electron occupation fraction fn as a function of excess hole concentration �p and �a� trap density Nt, �b� electron capture cross section �n, �c� defect
energy above the intrinsic energy Et−Ei, and �d� absolute temperature T. Unless noted, the plots are calculated for 1 � cm p-type silicon with Nt

=1014 cm−3, �n=10−15 cm2, �p=10−19 cm2, Et−Ei=−0.3 eV, and T=300 K.
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The most notable features of Fig. 1 are as follows. �a�
The excess majority carrier concentration that fully occupies
the defect increases with Nt. �b� As the ratio of minority to
majority capture cross section increases, the transition from
empty to occupied defects occurs more sharply at the point
where the excess majority carrier concentration equals Nt. �c�
The defect states are fully occupied when Et lies near the
valence band and unoccupied when Et lies near the conduc-
tion band. By contrast, when Et is nearer midgap, the defects
are mostly unoccupied when �p�Nt but fully occupied
when �p�Nt. �d� At low temperature, the defects are unoc-
cupied when �p�Nt but fully occupied when �p�Nt,
whereas at high temperature, the defects are fully occupied at
all �p. This final plot demonstrates that fn at equilibrium is
affected by sample temperature—a feature that is exploited
in Sec. III.

C. Procedure to account for nonconstant defect
occupation

A procedure to determine how defect occupation affects
photoconductance lifetime measurements is presented in Fig.
2. This flow diagram is specific to a sample with one donor-
like and one acceptorlike defect but is easily adapted to any
number of defects of either type.

First, the equilibrium concentrations are determined: n0,
p0, and nt0. This requires definition of the background dopant
concentration for donor Nd and acceptor Na atoms as well as
recombination parameters associated with the donorlike de-
fect �Ntd, Etd, �nd, and �pd� and acceptorlike defect �Nta, Eta,
�na, and �pa�. With an initial estimate of the defect occupa-
tion fractions fnd and fna, the total number of ionized donor
Nd tot and acceptor Na tot concentrations can be determined
with

Nd tot = Nd + �1 − fnd�Ntd, �8a�

Na tot = Na + fnaNtd, �8b�

where complete ionization of all donor and acceptor atoms is
assumed �although it is also possible to treat them as defects
with their own energy levels instead�.

If Nd tot�Na tot, the sample is n-type and n0=Nd tot and
p0=ni

2 /n0, or if Nd tot�Na tot, the sample is p-type and p0

=Na tot and n0=ni
2 / p0. With n0 and p0, the new values of fnd

and fna are calculated with Eq. �6�, and iteration of the above
steps gives a self-consistent solution to n0, p0, and nt0, where

nt0 = fndNtd + fnaNta. �9�

Once the equilibrium concentrations have been attained,
steady-state illumination concentrations can be determined
by a slightly different approach. The simplest method is to
solve for n, p, and nt at a given value of �p �or equivalently,
�n�. Initial values for n and p are chosen to be n=n0+�p
and p= p0+�p. fnd and fna can then be calculated with Eq.
�6� to give

n = n0 + �p − �nt − nt0� �10a�

and

p = p0 + �p + �nt − nt0� , �10b�

where nt= fndNtd+ fnaNta. Iterating Eqs. �6� and 10 to attain
convergence provides self-consistent values for n, p, and nt

and therefore for �n and �p using Eq. �5�.
Once the carrier concentrations are known, it is possible

to calculate the Shockley–Read–Hall recombination rate
through each defect, as well as Auger and radiative recom-
bination rates.15 By summing these components �and there-
fore assuming no carrier hopping between defects�, one at-
tains the total recombination rate U as a function of either �n
or �p and therefore �eff.

Finally, the photoconductance S can be determined as a
function of U �equal to G in steady state� from the free
carrier concentrations and Eqs. �1� or �3�. Importantly, S�G�
is what is determined by experimental photoconductance
measurements.

D. Apparent lifetime

In photoconductance experiments, one rarely has knowl-
edge of the dominating recombination parameters �Nt, Et, �n,
and �p�. In such a case, it is impossible to calculate fn and
separate values for �n and �p. Instead, one assumes �n
=�p �Eq. �2�� to determine the apparent effective lifetime
�eff app rather than the actual effective lifetime �eff. This is

Define:
• Nd

Define defect params:
• Ntd, Etd, σnd, σpd
• Nta, Eta, σna, σpa

Initial guess:
• fnd = 1

Na• fna = 0•

Ionised concentrations:
Nd_tot = Nd + (1–fnd)Ntd
Na_tot = Na + fnaNta

Equilibrium concentrations:
If Nd_tot > Na_tot: n0 = Nd_tot, p0 = ni2/n0
If Nd_tot < Na_tot: p0 = Na_tot, n0 = ni2/p0

Occupation fractions:
• fnd, fna with Eq. 6
• nt0 = fndNtd + fnaNta

fna and fnd converged?

Attained self-consistent n0, p0, nt0

No

Yes

Recomb rates: USRHa, USRHd, Urad, UAug, Utot

Effective lifetime: τeff with Eq 4
Apparent eff. lifetime: τapp, ∆napp with Eqs. 4&11

Select ∆p:
• p = p0 + ∆p

Initial guess:
• n = n0 + ∆p

Occupation fractions:
• fnd , fna with Eq. 6
• nt = fndNtd + fnaNta

Free electron conc:
• n = n0 + ∆p – (nt – nt0)

n converged?

Attained self-consistent n, p, nt

No

Yes

Sweep ∆p

Equilibrium

Illumination

FIG. 2. �Color online� Numerical procedure to determine fn��p� and
�eff app��napp�.
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achieved using the apparent excess carrier concentration
�napp,

�napp =
�S

q��n + �p�W
, �11�

and substituting �napp into Eq. �4� to find �eff app. �Almost all
work published on photoconductance measurements made
this assumption and therefore presented �eff app��napp� rather
than �eff��n�.� Thus, with the application of Eqs. �11� and
�4�, the generalized procedure can also determine �eff��n�
and �eff app��napp� for any set of defect parameters.

E. Deviation in apparent from actual lifetime for a
single defect

Figure 3 provides an example of how �eff app can deviate
from �eff for a single defect. It plots �a� �S��p� and �b�
�eff app��napp� and �eff��n� for the baseline parameters in Fig.
1. Under sufficient illumination, �S is proportional to ��n

+�p��p �Eq. �3�� because all defects are occupied and the
excess carrier concentrations are much greater than the de-
fect concentration. In this case, Eq. �2� is valid and �eff app

equals �eff. Under low illumination, however, �S is propor-
tional to �p�p because all light-generated electrons occupy
the defect rather than the conduction band and do not con-

tribute to the conductance. In this case, there are no addi-
tional free electrons to recombine and U is constant with �p.
Thus, while one can plot �eff app��napp� at low �napp, no data
have actually been taken at �n lower than when �eff app de-
viates from �eff. In practice, it is difficult to know when this
has occurred.

The relationship between �eff app��napp� and �eff��n� can
be assessed using the generalized procedure, but it can also
be examined explicitly using Blakemore’s model for a single
defect.7–9 Macdonald and Cuevas8 and Yashin9 derived ex-
pressions that state the conditions under which Nt causes a
deviation in �eff app��napp� from �eff��n� and they described
the trends between �eff app and �eff as a function of �n, Nt, Et,
and �n /�p. These dependencies are complicated but can be
summarized for silicon at room temperature to state that
�eff app deviates from �eff when the following conditions are
met: �i� the minority capture cross section is significantly
larger than the majority capture cross section, �ii� Et is not
near either band edge, and �iii� �n�Nt.

It is noteworthy that the deviation in �eff app��napp� from
�eff��n� due to a single defect is subtle, and to the authors’
knowledge, it has not been observed experimentally. With
modern instrumentation, however, this might be achieved by
the comparison of photoluminescence and photoconductance
measurements.

F. Deviation in apparent from actual lifetime for two
defects

The most easily observable experiment in which a vary-
ing fn can be detected is through photoconductance measure-
ments of multicrystalline silicon.4,16–19 In some cases,
�eff app��napp� deviates so greatly from �eff��n� that it pre-
vents any room-temperature assessment of recombination.
Dubbed photoconductance “trapping,” this artifact, which
manifests as a sharp rise in �eff app��napp� with decreasing
�napp, cannot be explained with a single defect but requires
the existence of two defects: a “recombination” defect and a
trapping defect.2

Figure 4 illustrates the effect of trapping, plotting

FIG. 3. �a� Excess conductance and �b� effective and apparent lifetimes
calculated for the baseline conditions of Fig. 1. Note that the transition due
to fn approaching unity occurs at �p�Nt, or equivalently, at �napp

�Nt�p / ��n+�p�.

FIG. 4. Apparent effective lifetime �eff app as a function of apparent excess electron concentration �napp for 1 � cm p-type silicon with two defects at 300 K.
The first defect has Nt=1014 cm−3, �n=�p=10−15 cm2, and Et−Ei=0 eV and the second defect has Nt=1014 cm−3, �n=10−15 cm2, �p=10−19 cm2, and Et

−Ei=−0.3 eV. The figure plots the dependence of �eff app��napp� on the second defect’s �a� trap density Nt, �b� electron capture cross section �n, and �c� defect
energy above the intrinsic energy Et−Ei as well as �d� the absolute temperature T.

084503-4 McIntosh, Paudyal, and Macdonald J. Appl. Phys. 104, 084503 �2008�

Downloaded 22 Oct 2008 to 150.203.45.136. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



�eff app��napp� for 1 � cm p-type at 300 K. These curves
were determined by the generalized procedure for two donor-
like defects, where one defect is at midgap with symmetrical
capture cross sections, defined with Nt=1014 cm−3, �n=�p

=10−15 cm2, and Et−Ei=0 eV, and where the second trap-
ping defect has the same parameters as those used in Fig. 1.
�To permit a simple comparison between curves, the calcu-
lations omit intrinsic recombination and the temperature de-
pendence of mobility and thermal velocity and capture cross
section. It is trivial to include such effects in the generalized
procedure if the dependencies are known.�

The role of the trapping defect is evident in Fig. 4. As
injection decreases, there is a sudden rise in �eff app, which
saturates at a value higher than the actual �eff. As for a single
defect, the saturation results from the recombination being
limited by a lack of minority carriers, which populate defects
rather than the conduction or valence bands.

Other pertinent features of Fig. 4 are as follows. �a� The
sharp rise in �eff app occurs at higher �napp as Nt increases.
�b� The saturation level of �eff app increases as the majority
carrier capture cross section of the trapping defect decreases.
�c� The deviation in �eff app from �eff does not occur when the
trapping defect is near either band edge because fn is con-
stant. �d� The deviation in �eff app from �eff is greatest at low
T when fn of the trapping defect is zero at equilibrium,
whereas �eff app does not deviate from �eff at high T because
fn is unity at all injection. These conclusions are consistent
with those for Fig. 1, which plots fn of the trapping defect.

Prior to this work, the effect of two-defect occupation on
photoconductance lifetime had been assessed with the
Hornbeck–Haynes model.2,4,6,20,21 This model assumes that
fn of the trapping defect switches from unity to zero under
illumination and does not permit recombination �i.e., either
�n or �p equals 0�. It has the advantage of generating an
explicit equation to account for trapping on a photoconduc-
tance lifetime curve, but it does not permit a detailed assess-
ment of all parameters as performed here. Most notably, it
cannot account for changes in fn due to temperature—a re-
lationship that is now exploited experimentally.

III. EXPERIMENT

The deviation in �eff app from �eff is sometimes consid-
ered a reason to avoid photoconductance measurements of
multicrystalline silicon,22 and as evident in Fig. 4, the devia-
tion can be vast. Figure 4�d� illustrates, however, that the
deviation in �eff app from �eff is increasingly suppressed with
increasing temperature. Photoconductance measurements at
elevated temperature therefore provide a means to circum-
vent the influence of multicrystalline trapping. Temperature-
controlled measurements also permit a more detailed charac-
terization of the defects.

Figure 5 provides an example of temperature-controlled
photoconductance lifetime measurements of a 290 �m thick
1 � cm p-type multicrystalline silicon wafer. A low surface
recombination velocity was attained by coating the surfaces
with amorphous silicon nitride by plasma-enhanced chemical
vapor deposition �PECVD�,15 thereby preventing surface re-
combination from affecting the measurements.

The experimental data �symbols� were taken using an
apparatus described in Ref. 23. It exhibits the aforemen-
tioned trend of a sudden increase in �eff app with decreasing
�napp at some onset concentration �nonset as well as a de-
crease in �nonset with increasing T. In this example, �nonset is
less than 1013 cm−3 at 100 °C, which is sufficiently low to
analyze �eff at almost all meaningful injection levels. It is
interesting that �nonset does not saturate with decreasing tem-
perature, indicating that the trapping defects are not entirely
populated—even at the low temperature of −150 °C. At high
�napp, �eff app decreases rapidly due to Auger recombination.
Finally, while there is a faint suggestion that �eff app might
saturate with decreasing �napp at lower temperatures, �eff app

continues to rise monotonically. This disagreement between
theory and experiment is likely due to the existence of addi-
tional trapping defects.

The experimental data of Fig. 5 cannot be modeled by
either Blakemore’s equation for a single defect, which cannot
produce a sudden rise in �eff app, or by Hornbeck and
Haynes’s equation for two defects, which does not reduce
�nonset with temperature. The trends in the data do, however,
agree reasonably with those determined by the generalized
procedure for two defects—as illustrated by the lines in Fig.
5. The curves were generated for a recombination defect at
midgap with symmetric capture cross sections and defined
by Nt=1013 cm−3, �n=�p=10−16 cm2, and Et−Ei=0 eV,
and a trapping defect below midgap with asymmetric capture
cross sections and defined by Nt=3�1015 cm−3, �n

=10−17 cm2, �p=10−21 cm2, and Et−Ei=−0.4 eV. The re-
sulting theoretical trends agree reasonably with the experi-
mental trends, but no attempt was made to optimize the fit
between theory and experiment. Since the capture cross sec-
tions and even the defect level can change with temperature
and since a variety of defects is expected to exist in the
impurity laden grain boundaries, attaining high agreement

FIG. 5. �Color online� �eff app��napp� for 1 � cm p-type multicrystalline
silicon wafer for a range of sample temperatures. The symbols represent
experimental points and for clarity, only every fourth point is plotted. The
lines were calculated with the generalized procedure for two defects: the
first defined by Nt=1013 cm−3, �n=�p=10−16 cm2, and Et−Ei=0 eV and
the second by Nt=3�1015 cm−3, �n=10−17 cm2, �p=10−21 cm2, and Et

−Ei=−0.4 eV.
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between theory and experiment would require the fine tuning
of an impractical number of parameters. What can be con-
cluded from the simulation is that the multicrystalline silicon
is reasonably well modeled as having a high concentration of
defects ��2�1015 cm−3� with an energy in the lower half of
the bandgap and with �n much smaller than �p.

We note that the experimental data were not influenced
by transient effects, as construed from varying the illumina-
tion decay constant and attaining identical results. We do not
ascribe the increase in �eff app to DRM because the samples
did not contain a p-n junction12,13 and because following the
procedure in Ref. 11, the charge density in the PECVD sili-
con nitride �at most 5�1012 cm−2� �Ref. 15� is insufficient
to cause an increase in �eff app at a �n near or above �nonset.

IV. CONCLUSION

This work presented a numerical procedure to determine
a semiconductor’s apparent and actual lifetimes accounting
for the occupation of any number of defects. An experimen-
tal example that illustrated the utility of the procedure was
provided. The example also showed that the detrimental in-
fluence of trapping in multicrystalline silicon can be miti-
gated by performing photoconductance measurements at el-
evated temperature.
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